Use Algebraic Notation AND Show All of Your Work

Determine whether each relation is a function. (Circle the correct response.)
Give the domain and range for each relation.
[4, 6, 6 pts]

1. $\{(4,5),(6,7),(8,8)\}$

Function OR Not a Function

Domain Set: \qquad
Range Set: \qquad
[4, 6, 6 pts$]$
2. $\{(3,4),(3,5),(4,4),(4,5)\}$

Function OR Not a Function

Domain Set: \qquad
Range Set: \qquad
For $g(x)=2 x^{2}+3 x-1$, find the indicated function values.
[5 pts]
2. $g(0)$

$$
g(0)=
$$

\qquad
[8 pts]
3. $g(-4)$

$$
g(-4)=
$$

\qquad
[10 pts]
4. $g(5 a)$

$$
g(5 a)=
$$

Identify graphs in which \boldsymbol{y} is a function of \boldsymbol{x}.
[6 pts each]
5.

Function OR Not a Function
6.

Function OR Not a Function
7.

Function OR Not a Function
8.

Function OR Not a Function

Use the graph of g to find the following values. [6 pts each]

9. $g(-4)$

$$
g(-4)=
$$

\qquad
10. $g(2)$

$$
g(2)=
$$

\qquad
11. For what value of x is $g(x)=1$?
\qquad
12. For what value of x is $g(x)=-1$?

$$
x=
$$

13. (a) Explain how to determine whether a relation is a function.
(b) What is a function?

[9 pts]

14. Which one of the following is true? (Circle the correct letter.)
(a) All relations are functions.
(b) No two ordered pairs of a function can have the same second component and different first components.
(c) The graph of every line is a function.
(d) A horizontal line can intersect the graph of a function in more than one point.

Find the domain of each function.
[8 pts]
15. $f(x)=3 x+5$

Domain Set: \qquad
[10 pts]
16. $f(x)=\frac{2 x}{x-3}$

For $g(x)=2 x+7$ and $f(x)=3 x^{2}-4 x$, find the indicated functions.
[9 pts]
17. $(f+g)(x)$

$$
(f+g)(x)=
$$

\qquad

[9 pts]

18. $(f-g)(x)$

$$
(f-g)(x)=
$$

\qquad
[11 pts]
19. $(f g)(x)$

$$
(f g)(x)=
$$

[9 pts]

20. $\left(\frac{f}{g}\right)(x)$

$$
\left(\frac{f}{g}\right)(x)=
$$

Solve each inequality, and state the solution set in INTERVAL notation.
Graph this solution set on a number line.
[8, 3, 4 pts]
21. $17-3 x \leq 29$

[11, 3, 4 pts]
22. $3+2(3-2 x)<5(2-3 x)$

Solution Set: \qquad

Solution Set:
[16, 3, 4 pts]
23. $\frac{x-4}{6} \geq \frac{x-2}{9}+\frac{5}{18}$

Solution Set: \qquad
[8, 4 pts$]$
24. When solving an inequality, under what conditions will it be necessary to change the direction of the inequality symbol? Give one example.

Example:

Solve each compound inequality, and state the solution set in INTERVAL notation.
Graph this solution set on a number line.
[16, 5, 6 pts]
25. $4(1-x)<-6$ AND $\frac{x-7}{5} \leq-2$

Solution Set: \qquad
[16, 5, 6 pts]
26. $x-1 \leq 7 x-1$ AND $4 x-7<3-x$

Solution Set: \qquad
[16, 5, 6 pts]
27. $4 x+3<-1$ OR $2 x-3 \geq-11$

Solution Set: \qquad
[16, 5, 6 pts]
28. $2 x-5 \leq-11$ OR $5 x+1 \geq 6$

0

Solve each equation, and state the solution set.
[18, 5 pts$]$
29. $|2 x-1|=7$

Solution Set: \qquad
[18, 5 pts]
30. $|x+1|+5=3$

Solution Set: \qquad
[20, 5 pts$]$
31. $|6 y-2|+4=32$

Solution Set:

[20, 5 pts]
32. $|2 x-4|=|x-1|$

